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Maximilian Weiß, Katrin Angerbauer, Alexandra Voit, Magdalena Schwarzl, Michael Sedlmair, and Sven Mayer
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Fig. 1. The four tested visualizations display additional information during DIY tasks. (a) Stepwise assembly instructions where the next
placements are depicted using green highlights. (b) The crosshair depicts position, angle, and depth; the center represents the drill
hole position, the small crosshair the angle, and the fill state of the crosshair the current depth. (c) The line on the wood indicates the
position while the chart indicates the current and required saw angle. (d) The crosshair shows the screw position, and the bullet chart
indicates the depth with green being the desired depth.

Abstract—Ubiquitous, situated, and physical visualizations create entirely new possibilities for tasks contextualized in the real world,
such as doctors inserting needles. During the development of situated visualizations, evaluating visualizations is a core requirement.
However, performing such evaluations is intrinsically hard as the real scenarios are safety-critical or expensive to test. To overcome
these issues, researchers and practitioners adapt classical approaches from ubiquitous computing and use surrogate empirical
methods such as Augmented Reality (AR), Virtual Reality (VR) prototypes, or merely online demonstrations. This approach’s primary
assumption is that meaningful insights can also be gained from different, usually cheaper and less cumbersome empirical methods.
Nevertheless, recent efforts in the Human-Computer Interaction (HCI) community have found evidence against this assumption, which
would impede the use of surrogate empirical methods. Currently, these insights rely on a single investigation of four interactive objects.
The goal of this work is to investigate if these prior findings also hold for situated visualizations. Therefore, we first created a scenario
where situated visualizations support users in do-it-yourself (DIY) tasks such as crafting and assembly. We then set up five empirical
study methods to evaluate the four tasks using an online survey, as well as VR, AR, laboratory, and in-situ studies. Using this study
design, we conducted a new study with 60 participants. Our results show that the situated visualizations we investigated in this study
are not prone to the same dependency on the empirical method, as found in previous work. Our study provides the first evidence that
analyzing situated visualizations through different empirical (surrogate) methods might lead to comparable results.

Index Terms—Situated visualization, evaluation, comparison

1 INTRODUCTION

Over the last decade, we have experienced that visualizations moved
away from the traditional screen setup and are now used and explored
in ubiquitous computing environments. Examples of such visualiza-
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tions include data physicalization [33] and situated visualizations in
Augmented Reality (AR) [34, 64]. With a growing interest in ubiq-
uitous visualizations, it is becoming more relevant to evaluate such
approaches properly. For many of these visualization approaches, it
would arguably be a good choice to evaluate them in-situ to obtain an
ecologically valid understanding of how these visualizations will be
used “in the wild.” There is a long history in visualization research
that shows the benefits, strengths, and value of such qualitative field
methods [7, 32, 45, 55, 57], but they also showed the importance of the
context in which the qualitative feedback is obtained. For instance, a
situated visualization that supports a doctor while inserting needles into
veins [28, 29] would be ideally evaluated in this very context. How-
ever, in some situations, such in-situ evaluations might be prohibitively
expensive or even impossible [28, 29]. In these cases, researchers and
practitioners have to find alternative evaluation methods, such as per-
forming lab studies of prototypical implementations to evaluate their
novel ideas. Instead of inserting needles into humans, they could, for
instance, insert them into a dummy human as substituted by Heinrich
et al. [28, 29]. Alternatively, even Virtual Reality (VR) might be used
to immerse users in a virtual situation that resembles a realistic con-
text [54]. Such approaches might be interesting to simulate the context
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in which visualizations are used, for instance, in disaster scenarios [63],
or home and office scenarios [3, 10].

This rich set of evaluation methods gives researchers and practition-
ers many options from which to choose. However a recent study from
the human-computer interaction (HCI) community by Voit et al. [61]
raised concerns about the comparability across different evaluation
methods. They conducted a study comparing different empirical meth-
ods for interactive smart objects. Their main finding shows that different
empirical methods result in different user feedback, thus questioning
whether simpler evaluation methods could be used as surrogates for
more expensive and time-consuming in-situ methods. If these results
hold, they would also have far-reaching implications for evaluating sit-
uated visualizations, as findings from surrogate evaluation approaches
such as a lab, AR, or VR setups might not generalize or transfer to their
real situations. Therefore, we deem it as important for the visualization
community to understand how far these results hold for other scenarios,
specifically for those including situated visualizations, such as the nee-
dle placement example [28, 29]. Based on these previous findings, we
need to hypothesize that the empirical method will indeed affect users’
perception of situated visualizations, although ideally, we would hope
that they do not.

To address these potential concerns, we set out to conduct a study
inspired by Voit et al.’s [61] work. For our study, we had to find a
balance between two competing goals. On the one hand, we wanted
to keep the study setup close to Voit et al.’s [61] to allow a systematic
comparison of the findings between the two studies. On the other hand,
we needed to step far enough away from the original study to allow
the integration of visualizations. Therefore, we changed the originally
studied smart objects to situated visualizations while keeping all other
variables consistent (i.e., evaluation methods and participant count).
With that reasoning for comparability in mind, we opted for situated
visualizations to enhance DIY tasks, namely an assembly, drilling, saw,
and screw task.

This work’s main contribution is an investigation of the effect of
the empirical methods on the subjective perception of situated visual-
izations. In detail, situated visualizations are supporting crafting and
assembly tasks in the DIY domain. Our main results show that the
worrisome results by Voit et al. [61] were not confirmed in the context
of our situated visualizations. In other words, our results revealed some
first evidence that surrogate empirical methods might be used to infer
insights about more expensive in-situ studies. Thus, we argue that
under certain circumstances evaluating situated visualizations using
users’ feedback is not dependent on the empirical method.

2 RELATED WORK

Our work follows up on recent investigations in the comparability of
findings from different empirical methods and the replication of empiri-
cal experiments. We also review related work on situated visualizations,
which is the subject of our study.

2.1 Comparison of Empirical Methods
The question of which evaluation method to select in which situation is
at the heart of empirical visualization research [41]. While historically
there was a stronger focus on quantitative methods, qualitative in-situ
(or “in the wild”) methods have gained much attention over the last
two decades in visualization research [7, 32, 45, 55, 57]. Specifically,
it is often imperative for the visualization domain to learn about the
value of the tools for real users, their real data, and their real work
environment [45, 57].

So far, the visualization community has mainly focused on studying
evaluation methods separately from each other. In the HCI community,
however, a large body of work seeks to directly compare different eval-
uation methods. For instance, they compared lab and in-situ studies,
characterizing their strengths and weaknesses [36, 37, 44, 48]. A com-
parison between online surveys and lab studies [8, 9] has shown higher
dropout rates for surveys with less accurate results [9]. One reason
could be that participants are more distracted by their environment [8].
Today, it is generally agreed upon that in-situ studies will result in an
overall better understanding with high ecological validity [31, 48].

Replication studies play an important role in the context of compari-
son between studies [14, 20]. Recently, the visualization community
has also advocated for such studies. For instance, Kay and Heer [35]
attempted to reproduce earlier findings by Harrison et al. [23]. They
found that a different model on the same data better explains the un-
derlying phenomena of visual correlation perception. Dragicevic and
Jansen [12] replicated work by Tal and Wansink [59], which found that
adding simple graphs and formulas to text increases the trustworthi-
ness. Dragicevic and Jansen [12] could not replicate that effect, though.
These studies are first instances in the visualization community that
underline the importance to investigate prior results and to understand
if they generalize to other situations [39]. Our work follows a similar
goal in that we seek to re-evaluate prior results from Voit et al. [61] in
a new and different context.

Consequently, closest to our work is the study by Voit et al. [61].
They showed a significant effect of empirical methods on evaluating
interactive smart objects in a smart home context. In their work, they
studied four smart objects which presented simple information, such
as the volume of a Bluetooth speaker using multi-color LED lights.
They investigated the usability, engagement, and attractiveness using
questionnaires, as well as general impressions using open questions.
In a between-subjects design, they showed that the users’ subjective
perception of these measurements is significantly influenced by the
empirical method. This finding raises the question of whether this
dependency is only true in the context of smart objects design, or if it
also applies to visualizations, which we seek to address in this work.
Thus, in line with traditional replication studies, this work is heavily
inspired by prior work although it is adapted to fit the needs for an
investigation in a new domain.

2.2 Situated Visualizations
Situated visualizations are a subclass of visualizations that are context
aware. Hereby, the environment becomes part of the visualization and
provides necessary semantics [52]. One class of situated visualizations
makes use of projected AR. Such situated visualizations are suitable to
support DIY tasks. In fact, this has been shown in various projects in
the past, meaning that they are well suited for our investigation.

Prior work investigated the usage of AR or projections for visualiza-
tions supporting users in various areas, such as urban planning [43, 60],
learning [50], displaying additional information [2, 47], cooking sup-
port [51], or Lego Duplo assembly support [21]. Thus, situated visu-
alizations are mainly used to support the user in performing different
tasks. As such, they also support the DIY community as well as indus-
trial manufacturing.

In the following, we introduce research directed towards supporting
the DIY community. The first step in the DIY process is to generate
an open design, which can be further supported with visualization
tools [40]. The next fundamental step is to generate manufacturing
instructions; here, Agrawala et al. [1] and Shao et al. [56] focused on
automatically generating assembly instructions. Lau et al. [38] went a
step further by designing furniture and generating the saw cutting plans
and connector positions. After the generation, the next step in the DIY
context is to present these plans. Here, Hattab et al. [26] focused on how
to support interactive fabrication using projection. Others investigated
situated visualizations for manual assembly tasks in an industrial set-
ting [16–18] as well as in individual assembly situations such as IKEA
assembly using projection lamps [67]. In recent years, various projects
replaced projection with AR headsets [5, 30] or handheld mobile AR to
display instructions [46]. As home assembly often requires multiple
people to work together, Fraser et al. [15] investigated instructing and
visualizing distributed assembly. With these examples in mind, we
believe that situated visualizations could have a strong impact on the
DIY community, so we picked it as our respective subject for the study.

Our study focuses specifically on the use of situated visualizations
for DIY tasks. Schoop et al. [53] presented work on augmented power
tools using situated visualizations. In their work, they employed projec-
tors and tablets to display additional guidance information to support
the worker. As such, they presented a length, drilling, and saw visu-
alization for DIY tasks. In the context of manual assembly, Funk et
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al. [16–18] proposed using simple lightboxes to guide a worker through
an assembly, using projected feedback with automatic quality control.
Finally, Heinrich et al. [29] proposed a needle guiding visualization
in an operating room, which can also be useful for drilling a hole or
placing a screw. Together these situated visualizations will serve as the
baseline to investigate if their subjective evaluation is affected by the
choice of the empirical method.

3 STUDY DESIGN

Voit et al. [61] showed how usability measurements of smart objects
are affected by the empirical method. Based on their findings, we
hypothesize that evaluating situated visualizations will also be affected
by the empirical method. Our study design was inspired by this work,
allowing us to compare the two studies. Therefore, we used the same
independent variables, especially the five empirical methods, as well as
the same measurements and participant count.

As a “use” case, we chose DIY crafting and assembly tasks. Using
DIY tasks allows us to use objects that resemble concepts of situated
visualization. We designed four VISUALIZATIONS for four different
DIY tasks: Assembly, Drill, Saw, and Screw. Moreover, we imple-
mented five different levels for the factor METHOD: evaluating the
designs using Online, VR, AR, in the Lab, and In-Situ. We used the vari-
able METHOD as a between-subjects factor and VISUALIZATION as a
within-subjects factor. We implemented fully functional visualizations;
however, to manipulate the visualizations, we used a Wizard-of-Oz
approach [11]. This approach is commonly used to study prototypes
early on in their development. Applying the Wizard-of-Oz approach
allows researchers and practitioners to analyze front-end implementa-
tions without having a back-end implementation, as the wizard, i.e., the
experimenter in our case, can imitate the back end.

3.1 Situated Visualizations for DIY tasks

During the selection process of the DIY tasks, we had various require-
ments. First, we selected tasks that are commonly performed. Second,
tasks cannot require high-level skills such as operating a laser cutter or
CNC milling machine. Additionally, during the selection process, we
took DIY tasks into account, which supported situated visualizations
in prior work, e.g., [26, 28, 29, 53]. This is especially important as the
goal of this paper is not to design and evaluate new visualizations, but
to study the effect of the empirical method. Finally, we decided to
select only four tasks to avoid overloading participants and to keep the
duration of the study below one hour. In particular, we selected the
following four tasks: assembling, drilling, sawing, and screwing. While
we designed different visualizations for our investigation, these situ-
ated visualizations are simply a means to compare evaluation methods.
Thus, the core analysis will not focus on the situated visualizations.

3.1.1 Assembly

The main goal of this task is to use situated visualizations to support
assembly tasks, such as assembling an IKEA chair. Situated visualiza-
tions can help guide users through this assembly process. Therefore,
previous work has investigated simple color projection for manual as-
sembly assistance [17] and interactive fabrication [26]. Inspired by that,
we used green lights to indicate the next step and red lights when a
step was performed incorrectly [17]. In detail, participants were asked
to assemble a chair presented in front of them, see Figure 1a. When
participants took the wrong part, we indicated the initial position also
with a red light. Participants were not asked to put screws into the chair,
only to put the chair’s parts together.

3.1.2 Drill

In the drill task, participants were asked to drill a hole with situated
visualizations showing the position, orientation, and depth of the drill.
A circular visualization represents the hole’s depth, a big crosshair
shows the positioning and a smaller crosshair indicates the orientation
of the drill, see Figure 1b. Heinrich et al. [28, 29] initially proposed
this visualization to support the injection of a needle during surgery.

Fig. 2. Setup of the study, the experimenter observing the actions of the
participants and carefully adjusting the visualization using a tablet.

3.1.3 Saw

The goal of this task was to cut the wood with the correct angle in the
right position. We projected the guiding line and the visualization for
the bevel angle, see Figure 1c. Here, we adopted the visualization from
Schoop et al. [53], who used a tablet next to a stationary saw.

3.1.4 Screw

In this task, participants were asked to place a screw into wood, while
being provided with position feedback and a depth chart in the form
of situated visualizations. We used a crosshair to match our other
conditions to indicate the position. To show depth, we used a bullet
chart [13] (see Figure 1d). Similar to Schoop et al. [53], we gave
position and depth feedback using a projection.

3.2 Different Empirical Methods

We investigate whether using an online survey (Online), a lab study
(Lab), an in-situ study (In-Situ), or studies using augmented (AR) and
virtual reality (VR) affects the subjective evaluation of visualizations.

Large-scale studies, like Mechanical Turk studies [27, 42] or online
surveys, are used to evaluate visualizations with a broad range of partic-
ipants. Further, online surveys enable researchers to gain feedback in a
time efficient manner [9,58]. Thus, the power here is that online studies
provide a fast evaluation by many people; however, they have major
constraints in terms of context for participants. Therefore, the variation
is often high. In contrast to the abstract, unknown settings presented
as in online studies, are lab studies. Lab studies are highly controlled;
however, participants might be affected by the level of control. Thus,
they might not behave as they would in their real environment. There-
fore, it can be beneficial to overcome these drawbacks with in-situ
studies. In-situ studies can be used to evaluate visualizations in their
natural context of use, for example, directly with domain experts. This
enables researchers to gain feedback regarding their visualizations with
high ecological validity [7]. However, since researchers are not in full
control of the environment, these studies are prone to external influ-
ences caused by the environmental setting like interruptions caused by
others. Moreover, in-situ studies are cost and time-intensive and some-
times even impossible. AR [6, 29] and VR [54] enable researchers to
study such scenarios. Specifically, VR offers the possibility to simulate
environmental conditions to evaluate visualizations. This, for instance,
allows then to study scenarios that would put the people’s health at risk
in the real-life [29, 54]. The usage of AR and VR enables ethical study
designs in these cases. However, it should be made clear that AR and
VR potentially do not replicate real-world behavior.

In summary, Online, Lab, In-Situ, AR, and VR together comprise an
empirical method space. None of these methods are perfect for every
case as it always depends on the unique scenario. This is one more
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reason to understand if empirical methods can be compared or even
substituted with another method.

3.3 Measures

As in the original study by Voit et al. [61], we are primarily interested
in traditional usability questionnaires, which can be equally tested in
all five empirical METHODS (including Online). Thus, we use the same
three standardized questionnaires: system usability scale (SUS) [4],
Augmented Reality Immersion (ARI) [19], and AttrakDiff [24,25]. The
SUS [4] is often used to assess the usability of prototypes. ARI [19],
focuses on engagement, immersion, and location-awareness. The At-
trakDiff investigates the pragmatic qualities, hedonic qualities, and
attractiveness of a prototype/product for the users [24, 25]. We tested
AttrakDiff with the sub-scales: Pragmatic Quality (PQ), Hedonic Qual-
ity - Identity (HQ-I), Hedonic Quality - Simulation (HQ-S), and At-
tractiveness (ATT). Finally, we asked how often participants used to do
these tasks, what they liked or disliked, the usefulness of the visualiza-
tions, possible improvements, and if they envision other use cases. In
the ideal case, the questionnaires’ results should not be systematically
different for the different METHODS. However, previous work [61]
suggested that the results differ between the applied METHODS.

3.4 Procedure

For all conditions, we informed participants about the study and ob-
tained their informed consent. A demographics questionnaire was
then completed. Afterward, we guided the participants through all the
VISUALIZATIONS using a Latin square design [65].

Before each task, we explained how the visualization works. We
asked participants if they were comfortable performing the task and
gave them a refresher on how to use power tools if needed. After all
preliminary open questions were answered, participants performed the
tasks. During the whole study, the experimenter (wizard) was standing
directly next to the participant observing and mimicking the partici-
pants’ actions, as shown in Figure 2. In the Online condition, we sent a
link to the online survey where they watched videos instead of seeing
live visualizations and then filled out the same questionnaires as all
the other participants. In the In-Situ condition, we visited participants
at their homes so they could perform the tasks in their familiar envi-
ronment in which they probably conducted crafting or assembly tasks
beforehand. All participants used the same appliances (i.e. no one used
their own equipment). After each VISUALIZATION, we asked them to
rate the visualizations using the questionnaires SUS [4], ARI [19], and
AttrakDiff [24, 25].

At the end of the study, they were asked to fill out the final question-
naire and were compensated for their participation with 10 EUR.

3.5 Apparatus

To manipulate the visualizations, we used a Wizard-of-Oz approach.
With this approach, the researcher (wizard) was able to imitate the
system without a full implementation. To control the visualization, we
implemented a dedicated Android application running on a tablet, as
shown in Figure 2. For each visualization, we developed a special inter-
face to quickly and precisely manipulate the visualizations. The tablet
was connected to the same dedicated WiFi router as the visualizations.
This ensured a minimum latency, such as 5ms network latency. All
visualizations were implemented using Unity, enabling us to deploy
them on the projector, AR glasses, and VR headset.

In the Online condition, we used 30-second YouTube videos, show-
ing the tasks being performed in the Lab condition setup, see Figure 3a.
After each video, the participant was asked to answer the question-
naires. In all other conditions, we used the same online questionnaire
but without showing the videos to the participants. The VR scene
resembled the actual study room. We used an HTC Vive with two
controllers to interact with the VR environment; see Figure 3b. The
AR condition was run on a Microsoft HoloLens and also implemented
in Unity using Vuforia image target tracking, see Figure 3c. The Lab
and In-Situ condition’s visualizations were displayed using a projector,
see Figures 3d and 3e.

(a) Online (during drilling)

(b) VR (overshot drilling)

(c) AR (before drilling)

(d) Lab (before drilling)

(e) In-Situ (overshot drilling)

Fig. 3. The five METHODS with the drill task visualization.
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Fig. 4. Plots showing the mean scores (black circles) of SUS, ARI, and AttrakDiff (PQ, HQ-I, HQ-S, ATT) questionnaires for all five METHODS (Online,
VR, AR, Lab, In-Situ). The error bars show standard deviation. The violin plots show the distribution of the responses across all participants. To
increase comparability between the different questionnaires, the scales were adjusted only for this graph.

Analysis of variance (ANOVA) Bayesian analysis

METHOD VISUALIZATION M × V METHOD VISUALIZATION M × V Likeli-
hood

F4,55 p η2 F3,165 p η2 F12,165 p η2 BF10 error % BF10 error % BF10 error %

SUS 1.342 .266 .044 1.662 .177 .016 .452 .94 .017 .256 .553 .209 15.215 .001 .907 3.9
ARI .35 .842 .018 2.279 .081 .012 1.728 .065 .034 .156 3.328 .329 2.501 .039 8.599 6.42
PQ .217 .928 .010 3.374 .02 .022 1.179 .302 .03 .103 3.521 1.277 .605 .02 10.97 9.73
HQ-I .597 .666 .024 5.658 .001 .044 1.11 .355 .034 .121 .496 21.747 .701 .298 .801 8.26
HQ-S .579 .679 .023 2.714 .047 .021 1.060 .397 .032 .130 .604 .586 .533 .007 1.150 7.69
ATT .066 .992 .003 3.13 .027 .020 1.25 .254 .031 .089 3.521 .917 .501 .015 10.205 11.2

Table 1. A compact summary of ANOVA and Bayesian analyses performed on core comparison measurements. P-values highlighted in purple show
that the results are in contrast to Voit et al. [61] and p-values in green show they are the same. Likelihood of the Bayesian analysis represents the
likelihood of the data to occur under a model excluding the effect an METHOD in contrast to including an effect for METHOD.

3.6 Participants
We recruited 60 participants (25 females and 35 males). The age of
participants ranged between 18 and 63 years (M = 30.9, SD = 13.2),
and we recruited them via a university mailing list, social networks,
and in person. None of them were from the visualization community;
therefore, they can be considered non-experts in the context of this
study. Participants were balanced based on gender and age across the
five METHODS. The mean age ranged between 28.6 and 32.7 years
for the conditions with five females and seven males each. For the
METHODS, we exclusively recruited right-handed participants, but in
the Online condition, we had three left-handed participants. We asked
participants about their experience with power tools: 5.2% used a power
tool once a day, 3.0% multiple times a week, 10.9% once a week, 3.5%
multiple times a month, 18.7% once a month, 42.2% multiple times a
year, 13.9% once a year, and 2.6% never. As we had one color-vision
impaired participant, we adapted the colors to blue hues to fit the user’s
needs after correspondence with the user; this is in line with previous
works [29, 53].

4 RESULTS

Based on our study with 60 participants, we present quantitative find-
ings retrieved from the questionnaires and qualitative results gained
from the open questions.

4.1 Quantitative Results
We conducted a multivariate analysis of variance (MANOVA) with
between-subjects variable METHOD and within-subject variable VISU-
ALIZATION. We found no statistically significant effect on METHOD
(F(24,212) = 1.128, p = .315, Pillai’s trace = 0.453, η2 = .026). As
expected, there is a statistically significant effect on VISUALIZATION

(F(18,486) = 2.021, p = .007, Pillai’s trace = .209, η2 = .022). Further,
the two-way comparison METHOD × VISUALIZATION was not sta-
tistically significant (F(72,990) = .943, p = .621, Pillai’s trace = .385,
η2 = .031), which is in line with earlier work.

In the following, we present six univariate two-way ANOVAs for
questionnaire measures. As post-hoc tests, we performed pairwise
t-tests with Bonferroni-corrected p-values.

System usability scale (SUS): We conducted a two-way ANOVA
investigating the influence of METHOD and VISUALIZATION on SUS.
Figure 4 reports the descriptive results with audited scales for compara-
bility. The ANOVA revealed no statistically significant main effect on
METHOD (F(4,55) = 1.342, p = .266, η2 = .044) and VISUALIZATION

(F(3,165) = 1.662, p = .177, η2 = .016). We also found no statistically
significant two-way interaction effect of METHOD × VISUALIZATION
on SUS (F(12,165) = 0.452, p = .94, η2 = .017).

Due to the nature of null hypothesis significance testing (NHST),
it is impossible to accept a null-hypothesis formally (i.e., prove that
there is no effect). To gain further trust in our null findings, we thus
sought to triangulate this result with (a) an analysis of effect sizes and
(b) a Bayesian analysis. As analyses of variance showed no effects
on METHOD, the data were examined using estimated Bayes factors
and the Bayesian Information Criteria [62]. The analysis with default
prior scales [49] was conducted to determine whether the fit of data
under the hypothesis that no effects occurred under model subsets of
METHOD, VISUALIZATION, and METHOD × VISUALIZATION is more
likely. Participants were included as random factors. Estimated Bayes
factors of METHOD were .256 (±0.553%), for VISUALIZATION .209
(±15.215%), and for METHOD × VISUALIZATION < .001 (±0.907%).
In other words, the data are 3.899 times more likely to occur under a
model including no effect for METHOD than those including an effect
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Fig. 5. Plot showing the average time participants took to fill in all
questionnaires, for each METHOD (Online, VR, AR, Lab, In-Situ). Error
bars show CI95.

for METHOD.
Augmented Reality Immersion (ARI): We conducted a two-way

ANOVA to investigate the influence of METHOD and VISUALIZATION
on the dependent variable ARI, see Table 1 and Figure 4. Further,
Bayes factors estimates showed that the data are 6.417 times more
likely to occur under a model including no effect for METHOD than
those including an effect for METHOD.

AttrakDiff - Pragmatic Quality (PQ): We conducted a two-way
ANOVA to investigate the influence of METHOD and VISUALIZATION
on the dependent variable AttrakDiff - PQ, see Table 1 and Figure 4.
As the ANOVA revealed a statistically significant main effect on VI-
SUALIZATION, we performed post-hoc tests for VISUALIZATIONS;
however, we could not reveal any significant differences (p > .05).
Further, Bayes factors estimates showed that the data are 9.722 times
more likely to occur under a model including no effect for METHOD
than those including an effect for METHOD.

AttrakDiff - Hedonic Quality - Identity (HQ-I): We conducted a
two-way ANOVA to investigate the influence of METHOD and VISU-
ALIZATION on the dependent variable AttrakDiff - HQ-I, see Table 1
and Figure 4. We performed post-hoc tests for VISUALIZATIONS; how-
ever, we could not reveal any significant differences (p > .05). Further,
Bayes factors estimates showed that the data are 8.259 times more
likely to occur under a model including no effect for METHOD than
those including an effect for METHOD.

AttrakDiff - Hedonic Quality - Simulation (HQ-S): We con-
ducted a two-way ANOVA to investigate the influence of METHOD and
VISUALIZATION on the dependent variable AttrakDiff - HQ-S, see Ta-
ble 1 and Figure 4. We performed post-hoc tests for VISUALIZATIONS
if the ANOVA showed a statistically significant effect; however, we
could not reveal any significant differences (for all, p > .05). Further,
Bayes factors estimates showed that the data are 7.690 times more
likely to occur under a model including no effect for METHOD than
those including an effect for METHOD.

AttrakDiff - Attractiveness (ATT): We conducted a two-way

SUS ARI AttrakDiff

PQ HQ ATT

HQ-I HQ-S

Online .811 .926 .690 .822 .798 .784
VR .863 .779 .726 .805 .831 .629
AR .875 .908 .577 .802 .717 .568
Lab .816 .902 .727 .852 .871 .779
In-Situ .907 .934 .760 .825 .824 .805

All .869 .898 .672 .819 .807 .655

Table 2. Reliability measures (Cronbach’s α) for item reliability of the
questionnaire measures using the five research methods.
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Fig. 6. Word count by METHOD of the open questions. Error bars show
CI95.

ANOVA to investigate the influence of METHOD and VISUALIZATION
on the dependent variable AttrakDiff - ATT, see Table 1 and Figure 4.
We performed post-hoc tests for VISUALIZATIONS; however, we could
not reveal any significant differences (for all, p > .05). Again, Bayes
factors estimates showed that the data are 11.200 times more likely
to occur under a model including no effect for METHOD than those
including an effect for METHOD. Both studies found no statically
significant interaction effect.

4.2 Item Reliability

In the following, we check the item reliability, which gives a better
understanding of the questionnaires’ consistency. We assessed the
overall consistency of the questionnaire measures using Cronbach’s
alpha test for internal reliability, shown in Table 2. Overall internal
reliability of the questionnaires was good for SUS (α = .869), good
for ARI (α = .898), questionable for the PQ measure of AttrakDiff
(α = .672), good for the HQ-I measure of AttrakDiff (α = .819), good
for the HQ-S measure of AttrakDiff (α = .807), and questionable for
the ATT measure of AttrakDiff (α = .655). Table 2 shows the reliability
scores for each method and each questionnaire.

4.3 Questionnaire Completion Time

To better understand what could have affected the results, we analyzed
the time participants took to answer the questionnaires. Thus, we con-
ducted a one-way ANOVA of METHOD on Questionnaire Completion
Time, see Figure 5. The ANOVA revealed no statistically significant
difference; F(4,55) = .221, p = .926, η2 = .015. To support our non-
significant results, we again run Bayes factors estimates [62] on time.
The analyses showed that the data are 11.087 times more likely to occur
under a model excluding an effect for METHOD than including an effect
for METHOD (P10 = .090, error = ±.002%).

0

5

10

15

Online VR AR Lab In-Situ

st
a
te

m
e
n
t 

co
u
n
t

Fig. 7. Count of the atomic statements of the open questions for each
METHOD (Online, VR, AR, Lab, In-Situ). Error bars show CI95.
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4.4 Word Count Analyses

Words of all feedback items were counted to investigate the effort the
participants spent answering the open questions, see Figure 6. Because
the Shapiro-Wilk normality test showed that the data are not normally
distributed (W = .881, p < .001), we conducted an ANOVA of aligned
and ranked tests (ART) [66]. This analysis revealed that the word count
is significantly influenced by METHOD (F(4,55) = 2.994, p = .026), but
not by VISUALIZATION (F(3,165) = 1.147, p = .332). Moreover, no
interaction effect was found (F(12,165) = 1.476, p = .138). Wilcoxon
post-hoc signed-rank tests with Bonferroni correction applied revealed
significant differences between VR and Online, VR and Lab, VR and
In-Situ, and AR and In-Situ, p < .05. To support our findings, we again
run Bayes factors estimates: METHOD (P10 = 1.861, error = ±2.772%),
VISUALIZATION (P10 = .190, error = ±.518%), and METHOD × VISU-
ALIZATION (P10 = .055, error = ±2.104%). This supports our ANOVA
findings and, in detail, the influence for METHOD because a model
without METHOD as a factor is 0.537 times less likely to occur given
the data.

4.5 Qualitative Results

We recognize that investigating word count has its limitations. There-
fore, Voit et al. [61] extracted statements using open coding. However,
as they revealed that participants do not always distinguish between task
and used technology this also does not reveal the full picture. Thus, we
use affinity diagramming to sort and categorize atomic statements [22],
which allows us to uncover the differences in more depth.

We received 897 atomic statements from our 60 participants, see
Figure 7. Similar to our word count analysis, we tried to understand
if METHOD influenced the number of atomic statements. Because
Shapiro-Wilk normality could not reveal that the data are not normally
distributed (W = 0.979, p > .373), we conducted a one-way ANOVA
that revealed no significant difference in atomic statements (F(4,55) =

1.171, p = .112, η2 = .125). As this result is in contrast with our
word count results, we think it is important to understand the open
questions in detail. Thus, in the next step, three researchers applied
affinity diagramming to sort and categorize these atomic statements [22].
Based on our analysis, we recognized the following general categories,
which we will present in the following. For each question, we found the
groups concerning Technology (T) and Visualization (V). For instance,
when asking about “What would you improve about this visualization?”
we received 152 comments. However, only 100 comments addressed
the visualizations, and the other 52 comments addressed technology.
For example, P6 only commented on the used technology instead of
focusing on the visualization and, for instance, suggested using the

“new version of the HoloLens.” Furthermore, P36 suggested improving
the interaction in VR by “using a drill with one handle.”

We received 261 comments on the usefulness of our four tasks. Of
all comments, 82.7% were concerning positive usefulness and 17.3%
concerning negative usefulness. Overall, the comments were mainly
concerned with the Visualization: 207 positive comments (96.3%) and
30 negative comments (70.5%). Participants commented on six dif-
ferent topics within the positive comments: higher accuracy (23.3%),
intuitive (16.7%), helpful (15.8%), simplification (15.8%), efficiency
(14.4%), and visual guidance (14.0%). For instance, P24 found that
“one can identify what the next step is without interrupting the [task] by
referring to the assembly manual.” On the other hand, we identified five
negative groups: usefulness (42.2%), efficiency (22.2%), cumbersome
setup (13.3%), concerns regarding new technology (13.3%), and er-
gonomics (8.9%). Here P7 said: “when one is experienced [in crafting
the visualization, it] can be irritating.”

Regarding what the participants liked or disliked concerning the
visualizations, we received 164 “like” comments, and 74 “dislike” com-
ments. Of the 164 “like” comments, 157 pertain to the visualization
(95.7%), and from the 74 “dislike” comments, 37 comments have to
do with the visualization (50.0%). On the positive side, we received
responses on usability (V:32.9%, T:3.9%), design (V:23.2%), guidance
(V:23.2%), and workflow improvement (V:16.5%, T:0.6%). As P12
remarked, “[it was] easy to see how deep the screw has to go.” On

the negative side we found mentions of usability (V:8.1%, T:16.2%),
design (V:17.6%, T: 6.8%), precision (V:13.5%, T:6.8%), complexity
(V:9.5%, T:4.1%), immersion (V:1.4, T:9.5%), and concerns regarding
new technology (T:6.8%). Here, P59 stated, for instance, that “the VR
glasses are too demanding for the eyes [...]” and P6 in the AR condition
criticized “the heavy helmet on the head.” We asked participants if they
had “ever wished for assisting features” like those they experienced in
the study. Here, 63% said “yes” they had wished for it, 4% said they
sometimes thought it would be helpful, 11% said they have not yet
thought about assisting features but that they will do that in the future
as a result of their experience, and 22% said they never thought about
it while not mentioning any implications of the study.

We further received 118 comments on advantages and disadvantages,
with 69 about advantages (58.5%) and 49 about disadvantages (41.5%).
Again, we found that 76.3% were about visualizations and 23.7% about
technology. Here the advantages were: higher accuracy (V:43.5%),
helpfulness (V:29%, T:2.9%), and potential use in education (V:24.6%).
For example, P32 considered assistive technology as helpful since
“[there is the possibility] to test beforehand, before making mistakes
in reality.” On the other hand, we found disadvantages to be usability
(V:6.1%, T:12.2%), concerns regarding new technology (V:26.5%,
T:14.3%), complex setup (T:16.3%), immersion (V: 4.1%, T:8.2%),
and added complexity (V:12.2%). As an example of comments related
to setup issues, P55 remarked that “[there is] the disadvantage that you
have to take the electronic equipment with you.” Further, P22 criticized
that there is “no real sensation - no haptic feedback [in VR].” One
participant (P50) mentioned a usability issue: “the older generation
probably does not accept the system because they do not have the
digital knowledge for it.”

We asked participants if they could envision other scenarios where
this type of visualization could be useful. The majority (41%) stated
that it could be used in DIY tasks, for example, spirit levels (P33, P39,
P60) and sanders (P30, P48, P52). The second most common theme
was assembly assistance (19%), for instance, for repairs as stated by
P3, P13, P15, P27. Next was educational assistance (16%), such
as learning a new instrument (P3). Medical assistance (10%) was
ranked fourth; here, participants envisioned surgery assistance (P5,
P25, P45) but also use in the support of elderly or disabled people
(P10, P51, P53). The second to last theme was cooking assistance,
and last was construction assistance on building scale support. As an
example of use cases in educational assistance, P23 suggested: “to
make task instructions more interesting for the younger generation, e.g.,
assembling a closet at carpentry, or [using technology] for companies
to work more precisely.” Further, P14 mentioned: “in the field of crafts,
such assistive features could be utilized in various areas, for example
[...] when splicing fiber optic cables, to instantly see which fibers
belong together.”

Finally, after understanding the difference in the comments concern-
ing Technology and Visualization better, we ran a final test. As for
our investigation of situated visualizations, it is mostly important if
the feedback concerning the visualizations is equally distributed be-
tween the different methods. Moreover, the Shapiro-Wilk normality test
showed that the data are not normally distributed (W = .871, p < .001)
and Bartlett’s test of homogeneity of variances showed homogeneity
distribution across conditions (K2 = 3.108, p = .54). Thus, we ran a
Kruskal-Wallis test on the number of atomic statements only concern-
ing Visualization. The test showed no statistically significant difference
(χ2(4) = 6.870, p = .143, η2 = .052), which further supports our
quantitative finding that situated visualizations can be compared using
different empirical methods.

5 DISCUSSION

We first set out to generally interpret the main results of our study.
Then, we more specifically discuss the differences and similarities
to the earlier study by Voit et al. [61], as well as the validity of the
comparisons that we seek to make.
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5.1 Interpretation of Main Results
We conducted a study to investigate how far the choice of empirical
method would affect the subjective perception of a set of situated
visualizations. Overall, our results did not confirm the hypothesis
that the choice of empirical method might have a systematic effect
as proclaimed in previous work [61]. In fact, all of our comparisons
showed non-significant results, which are further backed up by our
qualitative analysis as well by an investigation of non-significant results.
Effect sizes corresponding to non-significant p-values confirm our
observation as they have only a medium or even a small effect. To
further support the non-significant results, we also conducted Bayesian
factor estimates for all measurements to investigate the likelihood that
the method has an effect on the results. Our results showed that it was
more likely that the data occurred without the effect of the empirical
method in all cases. The combination of all three statistical observations
(analyses of variance, effect sizes, and Bayesian factor estimates) points
toward no effect of the empirical method. Additionally, our qualitative
analysis of the open questionnaires could not uncover any substantial
impact of the choice of empirical method. Thus, in summary, this leads
us to reject the starting hypothesis.

During the design of our study, we already expected that the tasks
and their corresponding visualizations would be distinctly different in
their performance. Our analysis overall confirms this effect. However,
as our investigations’ objective is to understand how the evaluation
of visualizations is affected by the empirical method, the investigated
visualizations are only a means that enables us to study this potential
effect. While these differences were not the main subject of our current
work, they do call for further in-depth investigations of situated visual-
izations. When evaluating the situated visualizations themselves, not
only subjective feedback is important but also performance measures
such as task completion time (TCT) and accuracy. Here, one should
also try to balance the experience of participants with the tasks at hand
as it can heavily influence the performance results. In our investigation,
we did not systematically study such performance measures across
conditions. In fact, such an investigation would not even have been
possible in our case as, in the online condition, participants did not
perform any task but instead simply watched a 30-second explanation
video.

5.2 Comparison to the Study by Voit et al. [61]
Our findings differ from those of the earlier study by Voit et al. [61]
in several ways. Most importantly, as described above, we could not
replicate any of the significant effects of empirical methods. We see
this result as something positive, as it gives some rise to the fact that
different empirical methods might be used as surrogates for others,
without biasing the outcomes too much.

In terms of questionnaires, our results also differed from those by
Voit et al. While Voit et al. showed that AttrakDiff’s HQ-S scale had the
highest impact (α = .794), our results indicated that the ARI question-
naire is the most important one (α = .898). The ARI questionnaire is
an “instrument for measuring immersion in location-based Augmented
Reality settings” [19]. As smart objects are less common than visu-
alizations, we hypothesize that the different item reliability might be
an effect of the object of study itself. The AttrakDiff’s HQ-S scale
determines the novelty and originality of a product. As smart objects
are novel, this scale best represents them. In contrast, situated visual-
izations using AR might be more common already, and thus the ARI
questionnaire seems to be a better fit. Concerning the questionnaire
completion time, we could also not show the same significant difference
as prior work.

However, we also identified a few similarities. For instance, our
results on the word count measurement revealed a significant difference
for the empirical method, a finding that is in line with the prior study.
Thus, while participants took the same amount of time to fill in the
questionnaires, the quantitative content outcome was different. Conse-
quently, we wondered if the word count is a helpful quality indicator or
if a more sophisticated analysis should be used.

The findings by Voit et al. [61] suggested furthermore that the replies
to open questions are biased toward the used technology. Thus, instead

of using open coding, we employed a more thorough analysis, namely
affinity diagramming, to uncover and understand technology bias. With
this analysis, we indeed were able to confirm this effect as we found that
a large number of statements were directed toward the used technology.
In detail, 137 of 553 (25%) answers to the open questions were related
to technology. Therefore, we can support Voit et al.’s [61] findings
that in the open questions, participants will take the technology into
account even when they are never asked about the technology, as all of
our questions addressed only the visualizations.

When separating comments that only concerned visualizations, we
again could not show a difference in atomic statements between the
different empirical methods though. This finding further supports
rejecting the main hypothesis.

5.3 Comparability of the Two Studies
We designed our study for maximum comparability to the one by Voit et
al. [61]. Our study had the same structure for the independent variables,
measurements, participant count, and analyses. Both studies included
60 participants, with 12 participants per between-subjects METHOD
condition. We also ran the same statistical analyses, and thus had the
same statistical power but still could not reveal the same significant
differences between empirical methods. While 12 participants per
condition are low, we argue that the possible effects that we could
not uncover with 60 participants are minimal. The Bayesian factor
estimates also supported this impression.

In terms of design, the main differences between the two studies
are the tasks and the underlying technology. While the original study
focused on tasks with smart objects, we picked DIY tasks in the context
of situated visualizations. Our assumption was that this new focus
is not too far away from the original context and would enable us
to compare our results to prior work as both adhere to components
of ubiquitous interaction. Naturally, however, there are also some
differences. Our situated visualizations provide a more precise and
more complex meaning than the simple LED color scale used by Voit et
al. [61]. As such, in our situated visualizations, the participants had to
pay attention to them to perform the task correctly. On the other hand,
Voit at al. [61] used the lights only to vaguely indicate the context, e.g.,
whether a plant needs water. As we only swapped smart objects for
situated visualizations in our investigation, we could still use the same
questionnaires and other study components, though.

Despite the close alignment of the two studies, we could not show
any of the prior significant effects on the independent variable ‘empiri-
cal method’. This result might give rise to question the generalizability
(in our case to situated visualization) of the earlier findings. However,
it might also simply stem from the differences in the two study designs
itself. In preparation for this study, we aimed for comparability to
prior results and even conducted the VR, AR, and Lab conditions in
the same study room using the same hardware as used in the previous
study. Another factor of interest is the sample of participants, which we
recruited using the same techniques and also balanced them by age and
gender across the groups as done in prior work. While our participant
pool might have been slightly more homogeneous than in previous
work, we argue that these factors should have only very little effect.

While in the overall design, we could not identify any differences, in
the In-Situ condition, we found a difference in the use of study materials,
which enabled performing tasks. In our study, we opted for maximum
comparability between our conditions and tasks. Therefore, we brought
all necessary materials to participants’ homes, such as the wood as well
as the power tools. However, Voit et al. [61] asked participants to use
their own study materials and tools, such as their own coffee maker
and their own watering can. On the one hand, our approach allowed
us to run the study in the first place, as participants might not have
had a chair to assemble, nor the required power tools. On the other
hand, this discrepancy might cause potential differences in the In-Situ
condition. Yet, as we could not even reveal a main effect, we argue
that this difference is minor, although further investigations need to pay
attention to the trade-off on how to design such In-Situ conditions.

In summary, the predominant reason for our deviating findings ap-
pears to be the difference in tasks and technologies: in this paper, we
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investigated situated visualizations, while the previous study investi-
gated smart objects. This statement has to be interpreted under the
assumption that there are no other unknown, hidden or confounding
factors in either of the two studies.

6 CONCLUSION

As visualizations have moved beyond the traditional screen setup, we
started an investigation into alternative evaluation methods. To do so,
we conducted a study inspired by Voit et al. [61] from the HCI domain,
using the same five empirical methods, the same three standardized
questionnaires (SUS, ARI, and AttrackDiff), also 60 participants, and
four new visualizations to support DIY crafting and assembly tasks.

Our results did not support prior findings in the context of situated
visualization. Thus, we cannot support previous findings that results
between different empirical methods vary systematically. Moreover, our
insights uncovered by the open questionnaire analysis further supports
this finding. Thus, we argue that the empirical method will not affect
users’ perception of such visualizations, at least for the conditions
and scenario that we tested. Additionally, we provide some evidence
that results from the HCI domain might not simply be adapted into
the visualization community. Along those lines, our work stresses the
importance of verifying prior results before extending them into new
domains.

A potential implication of our study is that remote evaluations, such
as the online condition, might be sufficient surrogates for certain types
of visualization evaluations. This insight is of additional value under
situations like the current COVID-19 pandemic, in which researchers
look for adequate alternatives when lab and field evaluations are not
possible.

With our investigation, we open the discussion of using different
empirical methods in the visualization community. However, we see
our work only as a starting point, as our DIY use cases with situated
visualizations are similarly narrow as in prior work. Thus, the next step
is to investigate a wider range of visualizations using these and other
empirical methods to confirm, refine, or refute our results. Additionally,
we plan to incorporate questions that are tailored to analyze visualiza-
tions. Running additional investigations will also address the problem
of the currently relatively low participant count.
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World lines. IEEE Trans. Visualization and Computer Graphics,
16(6):1458–1467, Nov 2010. doi: 10.1109/TVCG.2010.223

[64] S. White and S. Feiner. Sitelens: Situated visualization techniques for
urban site visits. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, p. 1117–1120. ACM, New York,
NY, USA, 2009. doi: 10.1145/1518701.1518871

[65] E. J. Williams. Experimental designs balanced for the estimation of
residual effects of treatments. Australian J.of Chemistry, 2(2):149–168,
Jun 1949.

[66] J. O. Wobbrock, L. Findlater, D. Gergle, and J. J. Higgins. The aligned
rank transform for nonparametric factorial analyses using only anova
procedures. In Proc. SIGCHI Conf. Human Factors in Computing Systems,
pp. 143–146. ACM, 2011. doi: 10.1145/1978942.1978963

[67] R. Xiao, S. Hudson, and C. Harrison. Supporting responsive cohabitation
between virtual interfaces and physical objects on everyday surfaces. Proc.
ACM Hum.-Comput. Interact., 1(EICS):12:1–12:17, June 2017. doi: 10.
1145/3095814

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on October 26,2020 at 11:50:23 UTC from IEEE Xplore.  Restrictions apply. 


