

An IoT Infrastructure for Ubiquitous
Notifications in Intelligent Living
Environments

 Abstract
Notifications are an important feature to proactively
inform smartphone users. However, reading
notifications on phones often has a disruptive effect on
tasks at hand or social situations. Today’s smart home
and office environments with their increasingly
connected devices provide rich opportunities to deliver
notifications in a context-sensitive and multi-modal way
into the direct surroundings of a user eliminating the
need to fish up the smartphone from the pocket. Due to
the missing tool support these opportunities have
however neither been sufficiently investigated nor
picked up for use in daily lives. With this work we
introduce an infrastructure for homes and offices that
enables designers and web-developers to design and
deploy context sensitive notification strategies using
arbitrary connected things and smart home products
such as TVs, tablets, projections, lamps, speakers and
many more. We introduce the opportunities offered by
this platform to go beyond simple Event-Condition-
Rules and describe how the system can be used to
carry out remotely controlled “in the wild” experiments.

Author Keywords
Notifications; Internet of Things; Smart Environments,
Smart Home; Smart Office

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from
Permissions@acm.org.
Ubicomp/ISWC'16 Adjunct , September 12-16, 2016, Heidelberg,
Germany
© 2016 ACM. ISBN 978-1-4503-4462-3/16/09…$15.00
DOI: http://dx.doi.org/10.1145/2968219.2968545

Thomas Kubitza
University of Stuttgart
Stuttgart, Pfaffenwaldring 5a,
Germany
thomas.kubitza@vis.uni-
stuttgart.de

Alexandra Voit
University of Stuttgart
Stuttgart, Pfaffenwaldring 5a,
Germany
alexandra.voit@vis.uni-
stuttgart.de

Dominik Weber
University of Stuttgart
Stuttgart, Pfaffenwaldring 5a,
Germany
dominik.weber@vis.uni-
stuttgart.de

Albrecht Schmidt
University of Stuttgart
Stuttgart, Pfaffenwaldring 5a,
Germany
albrecht.schmidt@vis.uni-
stuttgart.de

Figure 1: The meSchHub allows the rapid
interweaving of arbitrary devices and

communication technologies. Tapping a NFC
enabled smartphone on the meSchHub will
instantly connect it to its embedded WiFi
access point and give access to its web

based GUI

1536

UBICOMP/ISWC ’16 ADJUNCT, SEPTEMBER 12-16, 2016, HEIDELBERG, GERMANY

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g.,
HCI): Miscellaneous;

Introduction
Notifications on smartphones are an important feature
to proactively inform their owners about new
messages, calendar events, reminders and many other
events. However, often notifications have a disruptive
effect for instance when working on a task or in social
situations. Further the effort of reading notifications on
phones (pulling out the phone, activating the screen,
unlocking it, reading a new notification, putting it away)
rises with the frequency of received notifications. We
believe that smart home and office environments offer
the ability to detect a user’s context and use the direct
surroundings to display notifications (additionally) in
appropriate and ultimately more efficient and less
disruptive ways. Notifications could be for instance
shown on the living-room TV when sitting on the couch,
visualized on the digital photo-frame or indicated by a
Philips Hue light when in the bed room and read by the
Amazon Echo device when cooking in the kitchen. The
interweaving of such heterogeneous devices usually
requires a high implementation effort and low-level
expertise in various platforms, programming languages
and communication technologies and is thus out of
reach for many researchers, designers and end-users.

We propose an infrastructure for ubiquitous
notifications based on the meSchup IoT platform that is
easy to setup, supports a rich set of DIY platforms and
commercial smart home products out of the box and
provides flexible means for implementing context-
sensitive notification strategies using solely web
technologies such as HTML, CSS and JavaScript. Overall

it aims at lowering the barrier for the design,
deployment and exploration of ubiquitous notifications
in real-live home and office environments.

Previous work has explored the effect of notifications on
mobile phones [5] as well as desktop PCs [2] in
isolation. Recent work has as well analysed the usage
of smartphone notifications in the large [6] and
explored infrastructures to broadcast smartphone
notifications among screen based devices (tablet,
smartwatch, TV, desktop PC) of a user [8]. Some
Popular cloud based service such as IFTTT1 or
Pushover2 allow users to send notification to
smartphones based on external triggers but not to use
notifications on smartphones as triggers. Apps such as
Tasker3 allow to circumvent this but still only provide
simple trigger-action rules. Weber et al. established
design guidelines for displaying notifications on smart
TVs [9]. However, what is missing is the exploration of
context-sensitive intelligent display strategies of
smartphone notifications in real world environments
that go beyond screens as well as the necessary
technical foundations for their realisation.

With “Designing Calm Technology” Mark Weiser has
early described the concept of peripheral displays [10]
that allow us to perceive information without explicitly
shifting our attention to it. This has inspired the design
of many ambient information displays and
visualisations in art and research [1, 7, 4]. These
insights can act as inspiration for designing ubiquitous

1 http://ifttt.com
2 http://pushover.net
3 http://tasker.dinglisch.net

Figure 2: meSchup web GUI: Subset of
sensor/actuator modules that can be

remotely activated on an Android device

1537

UBICOMP/ISWC ’16 ADJUNCT, SEPTEMBER 12-16, 2016, HEIDELBERG, GERMANY

notification displays that are less disruptive. However,
it remains mostly unclear when smartphone
notifications are forwarded to smart environments
which strategies and multi-modal display forms users
find useful, effective and appropriate for certain
situations and notification types. Also further
interaction methods need to be explored that allow
users to remove or detail ubiquitous notifications from
the environment similar to the interaction with the
notification bar on smartphones. For instance a user
might find it inappropriate that a certain WhatsApp
notification is shown on a publicly visible near screen
while being in a social situation. Here a tap gesture on
the phone in the pocket could be for instance
implemented that allows to remove the most recent
message from any information display or to toggle its
detail level.

Architecture and Components
The proposed architecture uses the meSchup IoT
platform [3] for the realisation of ubiquitous
notifications in smart local environments. meSchup is a
generic modular IoT platform for the rapid creation of
local interactive smart spaces. It consists of a
meSchHub (Figure 1) that is equipped with
communication adapters for various common
communication technologies (e.g. WiFi, BLE, ZigBee, Z-
Wave, etc.), the meSchup middleware, a script engine
that runs user-defined interaction scripts and a web
based development IDE that assists designers in
creating this scripts. One hub can be set up per smart
space (e.g. office, flat, house), see Figure 3. A large
number of IoT and DIY platforms such as Android,
Arduino, Raspberry Pi 1-3, Intel Edison and of-the-shelf
smart home products (SmartPlugs, Ambilights,
Chromecast, Amazon Echo, etc.) can be used with

meSchup out of the box. The platform takes care of
device discovery and fully abstracts from platform and
communication technology heterogeneities. Interaction
scripts allow to interweave arbitrary input with arbitrary
output in real-time only requiring basic knowledge in
web technologies (JavaScript).

Sensing Smartphone Notifications
meSchup provides an Android App that allows to
expose any device sensors to the platform as well as to
control any of its actuators in real-time from interaction
scripts. This includes a “NotificationGateway”-module
(Figure 2) that can sense any smartphone notification
and forward it to the meSchup platform where
interaction scripts define what to do with it. To respect
the users’ privacy only notifications from Apps are
forwarded that the user has explicitly permitted (Figure
4). Besides setting up these permissions once, the App
usually runs persistently and invisibly in the
background. Notification events consists of the content,
the originating App name, a timestamp and a rich set
of additional meta-data (Figure 5) that can be used as
additional context information for better notification
display decisions. When a smartphone leaves the range
of a certain smart space (e.g. out of home WiFi) and
comes into the range of another known smart space
(e.g. office WiFi) the App automatically discovers the
local meSchup server and starts working with the
interaction scripts that are defined for this space. This
allows transparent roaming without any need for
manual configuration.

Notification Output Opportunities
Based on the available devices in a smart home or
office environments many output opportunities for
incoming notifications may exist. Rich visual

Figure 3: When a new notifications arrives
at a users’ phone it is forwarded to the local
meSchHub in proximity which then controls

local devices based on active interaction
scripts.

1538

SESSION: UBITTENTION

information can be displayed on TVs (using
Chromecast), Projectors (using a Raspberry Pi),
Desktop PCs (using Notifications in the right lower
corner), tablets, smartphones and smartwatches.
Further devices with lower visual information display
bandwidth can be used to indicate notifications, for
instance Lamps, Ambilights, LEDs (e.g. on/off, colour
scale, blinking). Further notifications can be displayed
or indicated in an auditory or tactile way. Devices that
have integrated speakers and text-to-speak capabilities
are for instance smartphones, tablets, TVs and the
Amazon Echo device. Tactile notifications can be for
instance triggered on tablets, smartphones or vibration
motors connected to Arduinos or Raspberry Pis. When a
notification is received the interaction scripts decide
whether, when and what output events are triggered.
An output event can be triggered on specific devices,
specific output modules or even all available devices
and modules. Obviously an intelligent notification
display is selective and based on the current context.

Sensing Context
In the same way as meSchup allows to instantly trigger
actuators in the environment it also allows to remotely
activate available sensors and to collect and interpret
its data as sensor events. Interaction scripts typically
use the sensor data from stationary deployed and
mobile devices in the environment to derive high-level
contextual information from these sensor events. Two
of many contextual information that can be derived
with the system are for instance person-tracking and
phone-pose detection.

Person-Tracking: We have implemented interaction
scripts that use a few statically deployed Raspberry Pi
and Android devices with BLE adapters that are able to

robustly detect near BLE key-fobs or activity trackers
(e.g. FitBit) on room level. By annotating these
personal devices with person names and the stationary
BLE scanners with room names it can easily be derived
who is in a room at the moment when a new
notification arrives. This obviously requires users to
actually wear their key-fob, activity tracker or any
other device with BLE advertising capabilities. This
contextual information can be then used to deliver
notifications to devices that are in the same room as
the envisioned recipient.

Phone-pose detection: meSchup can activate a
multitude of sensors embedded in smartphones. For
instance we use the data from the proximity sensor,
the accelerometer, and the display state to estimate
whether the phone is located in the pocket, lying on a
table or is in active use. When a notification arrives this
is for instance used in an interaction script to decide
whether it is actually forwarded to the environment or
ignored (e.g. because a user is currently anyway
interacting with his or her phone).

Much other contextual information can be derived using
interaction scripts of the meSchup platform and the
creativity of a script designer.

Designing Interaction Scripts
Interaction scripts are named pieces of JavaScript code
that combine sensor input, contextual state and
actuator output in real-time. When a script is saved it is
instantly applied to the environment. A typical script
could for instance forward notifications from the
smartphone owned by “Tom” to any device with a
display that is located in “Toms” proximity in the
moment of the notifications arrival.

Figure 4: meSchup Android App: A user
needs to explicitly give his permission that

notification from the selected App should be
forwarded

1539

UBICOMP/ISWC ’16 ADJUNCT, SEPTEMBER 12-16, 2016, HEIDELBERG, GERMANY

Incoming notifications usually run through a processing
pipeline that consists of the following steps:

1. User filtering: Through the permissions set on a
users’ smartphone only a subset of notifications
from Apps that a user considers as useful are
forwarded to the smart space.

2. Interaction script filtering: Interaction scripts
may exist only for notifications from certain users
or notification types.

3. Contextual filtering: Is the user currently in a
room that contains a device with display
capabilities? Is the user currently using his phone
anyway?

4. Modality selection: Which of the available output
modalities is best suited in the current situation?
Should one or multiple be used in parallel? (e.g.
visual and auditory)

5. Display rendering: Based on the chosen output-
devices the content needs to be rendered
compatible to the outputs’ capabilities. (e.g. How to
display a message with an Ambilight? How to
display a received emoji through a text-to-speech
interface? etc.)

Enabling “in the wild” Experiments
The exploration of appropriate ubiquitous notification
strategies will usually not be representative when it is
only based on pure lab experiments. In the wild
experiments are in two ways supported by the
proposed infrastructure. First, it is very easy to setup in
any environment (power on and connect to router).
Second, a cloud plugin can be activated that allows to
remotely deploy, edit and remove local interaction
scripts via a cloud based service website. This allows to

remotely fix implementation issues of interaction
scripts, for instance when reported by users during a
long term experiment. Or it allows running remotely
controlled A-B experiments that test various notification
routing and displaying strategies against each other at
different times and/or locations.

Conclusion and Future Work
In this paper we propose an infrastructure for smart
spaces that allows forwarding and displaying
smartphone notifications of inhabitants in intelligent
context-sensitive ways directly in their surroundings. A
large number of distributed sensors for context-
acquisition and actuators for multimodal displaying of
notifications are supported out of the box. Interaction
scripts are written purely in JavaScript which enables
the broad group of web developers to quickly start and
realize custom ubiquitous notification strategies. Finally
the integrated cloud connection supports the remote
management of interaction scripts and facilitates a
simpler realization of long term real world experimental
deployments.

For our current and future research the proposed
infrastructure acts as a valuable tool to answer a
number of research questions:

1. Are specific notification types preferred to be
forwarded to smart environments?

2. Can ubiquitous notifications reduce the disruption
effect? How should these be designed?

3. Can ubiquitous notifications be more effective
compared to the state of the art reading directly on
smartphones?

Figure 5: A notification event in JSON
format received from a smartphone which

can be interpreted by a meSchup interaction
script

1540

SESSION: UBITTENTION

4. Which notification output modalities are best suited
for which situations?

5. How can content privacy be realized in multi-user
and (semi-)public spaces?

6. How can users intuitively interact with ubiquitously
displayed notification?

7. How can simultaneous notifications of different
users be displayed by the same output resources?

8. How long (or often) should ubiquitous notifications
be displayed and what are strategies for their
removal?

We are looking forward that the proposed work will help
us and other researchers in answering these and many
other interesting research questions related to
ubiquitous notifications.

Acknowledgements
This work is supported by the EU (MeSch, no. 600851),
by the BMBF (13N13481) and by the DFG (EXC 310/1).

References
1. D. Hausen, S. Boring, C. Lueling, S. Rodestock, and

A. Butz. 2012. StaTube: Facilitating State
Management in Instant Messaging Systems.
Proceedings of the Sixth International Conference
on Tangible, Embedded and Embodied Interaction -
TEI ’12, ACM Press, 283.
http://doi.org/10.1145/2148131.2148191

2. S.i T. Iqbal and E. Horvitz. 2010. Notifications and
awareness: A Field Study of Alert Usage and
Preferences. Proceedings of the 2010 ACM
conference on Computer supported cooperative
work - CSCW ’10, ACM Press, 27.
http://doi.org/10.1145/1718918.1718926

3. T. Kubitza and A.Schmidt. 2015. Towards a Toolkit
for the Rapid Creation of Smart Environments. In

5th International Symposium on End-User
Development (IS-EUD ’15). Springer, 230–235.
http://doi.org/10.1007/978-3-319-18425-8_21

4. H. Müller, M. Pielot, and R. de Oliveira. 2013.
Towards ambient notifications. Interact, Workshop
Proceedings.

5. M. Pielot, K. Church, and R. de Oliveira. 2014. An
in-situ study of mobile phone notifications.
Proceedings of the 16th international conference on
Human-computer interaction with mobile devices &
services - MobileHCI ’14, ACM Press, 233–242.
http://doi.org/10.1145/2628363.2628364

6. A. S. Shirazi, N. Henze, T. Dingler, et al. 2014.
Large-scale assessment of mobile notifications.
Proceedings of the 32nd annual ACM conference on
Human factors in computing systems - CHI ’14,
ACM Press, 3055–3064.
http://doi.org/10.1145/2556288.2557189

7. T. Skog, S. Ljungblad, and L.E. Holmquist. 2003.
Between aesthetics and utility: designing ambient
information visualizations. IEEE Symposium on
Information Visualization 2003, IEEE, 233–240.
http://doi.org/10.1109/INFVIS.2003.1249031

8. D.Weber, A. S. Shirazi, and N. Henze. 2015.
Towards Smart Notifications using Research in the
Large. Proceedings of the 17th International
Conference on Human-Computer Interaction with
Mobile Devices and Services Adjunct - MobileHCI
’15, ACM Press, 1117–1122.
http://doi.org/10.1145/2786567.2794334

9. D. Weber, S. Mayer, A. Voit, R. Ventura Fierro, and
N. Henze. 2016. Design Guidelines for Notifications
on Smart TVs. In Proceedings of the ACM
International Conference on Interactive
Experiences for TV and Online Video - TVX '16.
ACM Press, 13-24.
http://dx.doi.org/10.1145/2932206.2932212

10. M. Weiser and J.S. Brown. 1996. Designing calm
technology. PowerGrid Journal.

1541

UBICOMP/ISWC ’16 ADJUNCT, SEPTEMBER 12-16, 2016, HEIDELBERG, GERMANY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

